MATH 135 - QUIZ 12 SOLUTIONS - JAMES HOLLAND

2019-12-10

Question 1. Calculate the following definite integrals:
i. $\int_{-\pi / 2}^{\pi / 2} \cos x \mathrm{~d} x$; and
ii. $\int_{-1}^{2}(3 x+4)^{100} \mathrm{~d} x$.

Solution .:
i. The indefinite integral $\int \cos x \mathrm{~d} x=\sin x+c$. Therefore

$$
\left.\int_{-\pi / 2}^{\pi / 2} \cos x \mathrm{~d} x=\sin x\right]_{-\pi / 2}^{\pi / 2}=\sin (\pi / 2)-\sin (-\pi / 2)=1-(-1)=2 .
$$

ii. Using a u-substitution of $u=3 x+4$ yields

$$
\int(3 x+4)^{100} \mathrm{~d} x=\int u^{100} \frac{1}{3} \mathrm{~d} u=\frac{1}{303} u^{101}+c=\frac{(3 x+4)^{101}}{303}+c .
$$

Therefore the definite integral can be calculated by

$$
\left.\int_{-1}^{2}(3 x+4)^{100} \mathrm{~d} x=\frac{(3 x+4)^{101}}{303}\right]_{-1}^{2}=\frac{10^{101}-1}{303},
$$

which can also be written as one hundred ' 9 's over " 303 ", or one hundred ' 3 's over " 101 ".

Question 2. Calculate the following derivatives: (Hint: don't try to calculate $\int e^{x^{2}} \mathrm{~d} x$)
i. $\frac{\mathrm{d}}{\mathrm{d} t} \int_{3}^{t} e^{x^{2}} \mathrm{~d} x$; and
ii. $\frac{\mathrm{d}}{\mathrm{d} t} \int_{3}^{2 t+1} e^{x^{2}} \mathrm{~d} x$.

Solution .:

i. By the fundamental theorem of calculus, this is just $e^{t^{2}}$.
ii. Using part (i), if $F(t)=\int_{3}^{t} e^{x^{2}} \mathrm{~d} x$ has a derivative $F^{\prime}(t)=e^{t^{2}}$, then $\int_{3}^{2 t+1} e^{x^{2}} \mathrm{~d} x=F(2 t+1)$ has, by the chain rule, a derivative of

$$
\frac{\mathrm{d}}{\mathrm{~d} t} F(2 t+1)=F^{\prime}(2 t+1) \cdot \frac{\mathrm{d}}{\mathrm{~d} t}(2 t+1)=e^{(2 t+1)^{2}} \cdot 2
$$

